Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.616
Filtrar
1.
Proc Biol Sci ; 291(2019): 20232796, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38531403

RESUMO

Despite constituting an essential component of fitness, reproductive success can vary remarkably between individuals and the causes of such variation are not well understood across taxa. In the zebra finch-a model songbird, almost all the variation in sperm morphology and swimming speed is maintained by a large polymorphic inversion (commonly known as a supergene) on the Z chromosome. The relationship between this polymorphism and reproductive success is not fully understood, particularly for females. Here, we explore the effects of female haplotype, and the combination of male and female genotype, on several primary reproductive traits in a captive population of zebra finches. Despite the inversion polymorphism's known effects on sperm traits, we find no evidence that inversion haplotype influences egg production by females or survival of embryos through to hatching. However, our findings do reinforce existing evidence that the inversion polymorphism is maintained by a heterozygote advantage for male fitness. This work provides an important step in understanding the causes of variation in reproductive success in this model species.


Assuntos
Tentilhões , Animais , Masculino , Feminino , Tentilhões/genética , Sêmen , Espermatozoides , Reprodução , Fenótipo , Inversão Cromossômica
2.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38482698

RESUMO

Chromosomal inversions may play a central role in speciation given their ability to locally reduce recombination and therefore genetic exchange between diverging populations. We analyzed long- and short-read whole-genome data from sympatric and allopatric populations of 2 Drosophila virilis group species, Drosophila montana and Drosophila flavomontana, to understand if inversions have contributed to their divergence. We identified 3 large alternatively fixed inversions on the X chromosome and one on each of the autosomes 4 and 5. A comparison of demographic models estimated for inverted and noninverted (colinear) chromosomal regions suggests that these inversions arose before the time of the species split. We detected a low rate of interspecific gene flow (introgression) from D. montana to D. flavomontana, which was further reduced inside inversions and was lower in allopatric than in sympatric populations. Together, these results suggest that the inversions were already present in the common ancestral population and that gene exchange between the sister taxa was reduced within inversions both before and after the onset of species divergence. Such ancestrally polymorphic inversions may foster speciation by allowing the accumulation of genetic divergence in loci involved in adaptation and reproductive isolation inside inversions early in the speciation process, while gene exchange at colinear regions continues until the evolving reproductive barriers complete speciation. The overlapping X inversions are particularly good candidates for driving the speciation process of D. montana and D. flavomontana, since they harbor strong genetic incompatibilities that were detected in a recent study of experimental introgression.


Assuntos
Inversão Cromossômica , Drosophila , Animais , Drosophila/genética , Montana , Cromossomo X/genética , Demografia , Especiação Genética
3.
Sci Rep ; 14(1): 5379, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438510

RESUMO

Tissue characterisation using T1 mapping has become an established magnetic resonance imaging (MRI) technique to detect myocardial diseases. This retrospective study aimed to determine the influence of left bundle branch block (LBBB) on T1 mapping at 1.5 T. Datasets of 36 patients with LBBB and 27 healthy controls with T1 mapping (Modified Look-Locker inversion-recovery (MOLLI), 5(3)3 sampling) were included. T1 relaxation times were determined on mid-cavity short-axis images. R2 maps were generated as a pixel-wise indicator for the goodness of the fit of T1 maps. R2 values were significantly lower in patients with LBBB than in healthy controls (whole myocardium/septum, 0.997, IQR, 0.00 vs. 0.998, IQR, 0.00; p = 0.008/0.998, IQR, 0.00 vs. 0.999, IQR, 0.00; p = 0.027). Manual correction of semi-automated evaluation tended to improve R2 values but not significantly. Strain analysis was performed and the systolic dyssynchrony index (SDIglobal) was calculated as a measure for left ventricular dyssynchrony. While MRI is generally prone to artefacts, lower goodness of the fit in LBBB may be mainly attributable to asynchronous contraction. Therefore, careful checking of the source data and, if necessary, manual post-processing is important. New techniques might improve the goodness of the fit of T1 mapping by reducing sampling in the motion prone diastole of LBBB patients.


Assuntos
Bloqueio de Ramo , Miocárdio , Humanos , Bloqueio de Ramo/diagnóstico por imagem , Estudos Retrospectivos , Artefatos , Inversão Cromossômica
4.
Chromosome Res ; 32(2): 6, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504027

RESUMO

Structural variants (SVs) pose a challenge to detect and interpret, but their study provides novel biological insights and molecular diagnosis underlying rare diseases. The aim of this study was to resolve a 9p24 rearrangement segregating in a family through five generations with a congenital heart defect (congenital pulmonary and aortic valvular stenosis and pulmonary artery stenosis), by applying a combined genomic analysis. The analysis involved multiple techniques, including karyotype, chromosomal microarray analysis (CMA), FISH, genome sequencing (GS), RNA-seq, and optical genome mapping (OGM). A complex 9p24 SV was hinted at by CMA results, showing three interspersed duplicated segments. Combined GS and OGM analyses revealed that the 9p24 duplications constitute a complex SV, on which a set of breakpoints matches the boundaries of the CMA duplicated sequences. The proposed structure for this complex rearrangement implies three duplications associated with an inversion of ~ 2 Mb region on chromosome 9 and a SINE element insertion at the more distal breakpoint. Interestingly, this genomic structure of rearrangement forms a chimeric transcript of the KANK1/DMRT1 loci, which was confirmed by both RNA-seq and Sanger sequencing on blood samples from 9p24 rearrangement carriers. Altogether with breakpoint amplification and FISH analysis, this combined approach allowed a deep characterization of this complex rearrangement. Although the genotype-phenotype correlation remains elusive from the molecular mechanism point of view, this study identified a large genomic rearrangement at 9p24 segregating with a familial congenital heart defect, revealing a genetic biomarker that was successfully applied for embryo selection, changing the reproductive perspective of affected individuals.


Assuntos
Cromossomos , Variações do Número de Cópias de DNA , Humanos , Inversão Cromossômica , Sequência de Bases , Células Germinativas , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
5.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38482945

RESUMO

Structural genomic variants are key drivers of phenotypic evolution. They can span hundreds to millions of base pairs and can thus affect large numbers of genetic elements. Although structural variation is quite common within and between species, its characterization depends upon the quality of genome assemblies and the proportion of repetitive elements. Using new high-quality genome assemblies, we report a complex and previously hidden landscape of structural divergence between the genomes of Drosophila persimilis and D. pseudoobscura, two classic species in speciation research, and study the relationships among structural variants, transposable elements, and gene expression divergence. The new assemblies confirm the already known fixed inversion differences between these species. Consistent with previous studies showing higher levels of nucleotide divergence between fixed inversions relative to collinear regions of the genome, we also find a significant overrepresentation of INDELs inside the inversions. We find that transposable elements accumulate in regions with low levels of recombination, and spatial correlation analyses reveal a strong association between transposable elements and structural variants. We also report a strong association between differentially expressed (DE) genes and structural variants and an overrepresentation of DE genes inside the fixed chromosomal inversions that separate this species pair. Interestingly, species-specific structural variants are overrepresented in DE genes involved in neural development, spermatogenesis, and oocyte-to-embryo transition. Overall, our results highlight the association of transposable elements with structural variants and their importance in driving evolutionary divergence.


Assuntos
Elementos de DNA Transponíveis , Drosophila , Animais , Masculino , Drosophila/genética , Genômica , Inversão Cromossômica , Evolução Molecular
6.
PLoS One ; 19(3): e0300305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517873

RESUMO

This article introduces a cutting-edge H∞ model-based control method for uncertain Multi Input Multi Output (MIMO) systems, specifically focusing on UAVs, through a flexible mixed-optimization framework using the Method of Inequality (MOI). The proposed approach adaptively addresses crucial challenges such as unmodeled dynamics, noise interference, and parameter variations. Central to the design is a two-step controller development process. The first step involves Nonlinear Dynamic Inversion (NDI) and system decoupling for simplification, while the second step integrates H∞ control with MOI for optimal response tuning. This strategy is distinguished by its adaptability and focus on balancing robust stability and performance, effectively managing the intricate cross-coupling dynamics in UAV systems. The effectiveness of the proposed approach is validated through simulations conducted in MATLAB/Simulink environment. Results demonstrated the efficiency of the proposed robust control approach as evidenced by reduced steady-state error, diminished overshoot, and faster system response times, thus significantly outperforming traditional control methods.


Assuntos
Inversão Cromossômica , Dinâmica não Linear , Humanos , Tempo de Reação , Incerteza
7.
Ann Lab Med ; 44(4): 324-334, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38433573

RESUMO

Background: Structural variants (SVs) are currently analyzed using a combination of conventional methods; however, this approach has limitations. Optical genome mapping (OGM), an emerging technology for detecting SVs using a single-molecule strategy, has the potential to replace conventional methods. We compared OGM with conventional diagnostic methods for detecting SVs in various hematologic malignancies. Methods: Residual bone marrow aspirates from 27 patients with hematologic malignancies in whom SVs were observed using conventional methods (chromosomal banding analysis, FISH, an RNA fusion panel, and reverse transcription PCR) were analyzed using OGM. The concordance between the OGM and conventional method results was evaluated. Results: OGM showed concordance in 63% (17/27) and partial concordance in 37% (10/27) of samples. OGM detected 76% (52/68) of the total SVs correctly (concordance rate for each type of SVs: aneuploidies, 83% [15/18]; balanced translocation, 80% [12/15] unbalanced translocation, 54% [7/13] deletions, 81% [13/16]; duplications, 100% [2/2] inversion 100% [1/1]; insertion, 100% [1/1]; marker chromosome, 0% [0/1]; isochromosome, 100% [1/1]). Sixteen discordant results were attributed to the involvement of centromeric/telomeric regions, detection sensitivity, and a low mapping rate and coverage. OGM identified additional SVs, including submicroscopic SVs and novel fusions, in five cases. Conclusions: OGM shows a high level of concordance with conventional diagnostic methods for the detection of SVs and can identify novel variants, suggesting its potential utility in enabling more comprehensive SV analysis in routine diagnostics of hematologic malignancies, although further studies and improvements are required.


Assuntos
Genoma Humano , Variação Estrutural do Genoma , Humanos , Inversão Cromossômica , Translocação Genética , Mapeamento Cromossômico
8.
Sci Rep ; 14(1): 5459, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443378

RESUMO

Roboticists often imbue robots with human-like physical features to increase the likelihood that they are afforded benefits known to be associated with anthropomorphism. Similarly, deepfakes often employ computer-generated human faces to attempt to create convincing simulacra of actual humans. In the present work, we investigate whether perceivers' higher-order beliefs about faces (i.e., whether they represent actual people or android robots) modulate the extent to which perceivers deploy face-typical processing for social stimuli. Past work has shown that perceivers' recognition performance is more impacted by the inversion of faces than objects, thus highlighting that faces are processed holistically (i.e., as Gestalt), whereas objects engage feature-based processing. Here, we use an inversion task to examine whether face-typical processing is attenuated when actual human faces are labeled as non-human (i.e., android robot). This allows us to employ a task shown to be differentially sensitive to social (i.e., faces) and non-social (i.e., objects) stimuli while also randomly assigning face stimuli to seem real or fake. The results show smaller inversion effects when face stimuli were believed to represent android robots compared to when they were believed to represent humans. This suggests that robots strongly resembling humans may still fail to be perceived as "social" due pre-existing beliefs about their mechanistic nature. Theoretical and practical implications of this research are discussed.


Assuntos
Reconhecimento Facial , Robótica , Humanos , Percepção Social , Inversão Cromossômica , Exame Físico
9.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401527

RESUMO

Following invasion, insects can become adapted to conditions experienced in their invasive range, but there are few studies on the speed of adaptation and its genomic basis. Here, we examine a small insect pest, Thrips palmi, following its contemporary range expansion across a sharp climate gradient from the subtropics to temperate areas. We first found a geographically associated population genetic structure and inferred a stepping-stone dispersal pattern in this pest from the open fields of southern China to greenhouse environments of northern regions, with limited gene flow after colonization. In common garden experiments, both the field and greenhouse groups exhibited clinal patterns in thermal tolerance as measured by critical thermal maximum (CTmax) closely linked with latitude and temperature variables. A selection experiment reinforced the evolutionary potential of CTmax with an estimated h2 of 6.8% for the trait. We identified 3 inversions in the genome that were closely associated with CTmax, accounting for 49.9%, 19.6%, and 8.6% of the variance in CTmax among populations. Other genomic variations in CTmax outside the inversion region were specific to certain populations but functionally conserved. These findings highlight rapid adaptation to CTmax in both open field and greenhouse populations and reiterate the importance of inversions behaving as large-effect alleles in climate adaptation.


Assuntos
Adaptação Fisiológica , Inversão Cromossômica , Animais , Adaptação Fisiológica/genética , Clima , Temperatura , Insetos
10.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339041

RESUMO

Sporadic hemophilia A (HA) enables the persistence of HA in the population. F8 gene inversion originates mainly in male germ cells during meiosis. To date, no studies have shown the origin and timing of HA sporadic noninversion variants (NIVs); herein, we assume that HA-sporadic NIVs are generated as a de novo variant. Of the 125 registered families with HA, 22 were eligible for inclusion. We conducted a linkage analysis using F8 gene markers and amplification refractory mutation system-quantitative polymerase chain reaction to confirm the origin of the sporadic NIVs (~0% mutant cells) or the presence of a mosaic variant, which requires further confirmation of the origin in the parent. Nine mothers, four maternal grandmothers, and six maternal grandfathers were confirmed to be the origin of sporadic NIVs, which most likely occurred in the zygote within the first few cell divisions and in single sperm cells, respectively. Three mothers had mosaic variants, which most likely occurred early in postzygotic embryogenesis. All maternal grandparents were free from sporadic NIV. In conclusion, F8 NIVs in sporadic HA were found to be caused primarily by de novo variants. Our studies are essential for understanding the genetic pathogenesis of HA and improving current genetic counseling.


Assuntos
Hemofilia A , Masculino , Humanos , Hemofilia A/genética , Hemofilia A/patologia , Linhagem , Sêmen , Mutação , Inversão Cromossômica , Fator VIII/genética
11.
Cell Genom ; 4(2): 100499, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38359788

RESUMO

The comprehensive genomic impact of ionizing radiation (IR), a carcinogen, on healthy somatic cells remains unclear. Using large-scale whole-genome sequencing (WGS) of clones expanded from irradiated murine and human single cells, we revealed that IR induces a characteristic spectrum of short insertions or deletions (indels) and structural variations (SVs), including balanced inversions, translocations, composite SVs (deletion-insertion, deletion-inversion, and deletion-translocation composites), and complex genomic rearrangements (CGRs), including chromoplexy, chromothripsis, and SV by breakage-fusion-bridge cycles. Our findings suggest that 1 Gy IR exposure causes an average of 2.33 mutational events per Gb genome, comprising 2.15 indels, 0.17 SVs, and 0.01 CGRs, despite a high level of inter-cellular stochasticity. The mutational burden was dependent on total irradiation dose, regardless of dose rate or cell type. The findings were further validated in IR-induced secondary cancers and single cells without clonalization. Overall, our study highlights a comprehensive and clear picture of IR effects on normal mammalian genomes.


Assuntos
Rearranjo Gênico , Translocação Genética , Humanos , Animais , Camundongos , Mutação , Genômica , Inversão Cromossômica , Mamíferos
12.
Haemophilia ; 30(2): 410-418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38343110

RESUMO

INTRODUCTION: Various risk factors for inhibitor development in haemophilia A (HA) have been described but Indian data remains scanty. AIM: We aimed to evaluate the genetic changes in Indian HA-patients that are associated with the development of inhibitors. METHODS: All HA-patients with inhibitors who availed coagulation-laboratory services from January-2015 till December-2021 and had their samples preserved for DNA extraction were included in this study. An equal number of severity-matched HA patients without inhibitors were also included as controls. Intron 22 and intron 1 inversions in Factor VIII gene were identified using inverse-shifting-PCR. Inversion-negative patients were further assessed by targeted NGS, MLPA. RESULTS: Thirty HA-patients with inhibitors were identified. All had severe-HA. Thirty severe-HA-patients without inhibitors were also included as controls. Intron 22 inversion (63.3%) and large deletions (15%) were the commonest variants identified. There was no difference in genetic variants in patients with low and high titre inhibitors. A3, A2 and C2 were the most common domains involved in inversion-negative patients with inhibitors. However, there was no significant difference in domain involvement among inversion-negative patients with and without inhibitors. Seven novel-variants were identified, including three large deletions, one large duplication and two nonsense variants in inhibitor-positive patients, and one frameshift variant in inhibitor-negative patient. After adjusting for clinical risk-factors, large deletions were independently associated with the presence of inhibitors [aOR:6.1 (1.41-56.3)]. CONCLUSION: Intron 22 inversions are the commonest variant in Indian patients with severe-HA. Large deletions predispose to inhibitor development independent of clinical risk factors.


Assuntos
Hemofilia A , Humanos , Hemofilia A/genética , Estudos de Coortes , Fator VIII/genética , Estudos de Associação Genética , Íntrons , Inversão Cromossômica , Genótipo , Fenótipo , Mutação
13.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38341653

RESUMO

MOTIVATION: Generative Adversarial Nets (GAN) achieve impressive performance for text-guided editing of natural images. However, a comparable utility of GAN remains understudied for spatial transcriptomics (ST) technologies with matched gene expression and biomedical image data. RESULTS: We propose In Silico Spatial Transcriptomic editing that enables gene expression-guided editing of immunofluorescence images. Using cell-level spatial transcriptomics data extracted from normal and tumor tissue slides, we train the approach under the framework of GAN (Inversion). To simulate cellular state transitions, we then feed edited gene expression levels to trained models. Compared to normal cellular images (ground truth), we successfully model the transition from tumor to normal tissue samples, as measured with quantifiable and interpretable cellular features. AVAILABILITY AND IMPLEMENTATION: https://github.com/CTPLab/SST-editing.


Assuntos
Neoplasias , Transcriptoma , Humanos , Perfilação da Expressão Gênica , Inversão Cromossômica , Edição de Genes
14.
Sci Rep ; 14(1): 663, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182726

RESUMO

In clinical practice, diagnosis of suspected carious lesions is verified by using conventional dental radiography (DR), including panoramic radiography (OPT), bitewing imaging, and dental X-ray. The aim of this study was to evaluate the use of magnetic resonance imaging (MRI) for caries visualization. Fourteen patients with clinically suspected carious lesions, verified by standardized dental examination including DR and OPT, were imaged with 3D isotropic T2-weighted STIR (short tau inversion recovery) and T1 FFE Black bone sequences. Intensities of dental caries, hard tissue and pulp were measured and calculated as aSNR (apparent signal to noise ratio) and aHTMCNR (apparent hard tissue to muscle contrast to noise ratio) in both sequences. Imaging findings were then correlated to clinical examination results. In STIR as well as in T1 FFE black bone images, aSNR and aHTMCNR was significantly higher in carious lesions than in healthy hard tissue (p < 0.001). Using water-sensitive STIR sequence allowed for detecting significantly lower aSNR and aHTMCNR in carious teeth compared to healthy teeth (p = 0.01). The use of MRI for the detection of caries is a promising imaging technique that may complement clinical exams and traditional imaging.


Assuntos
Cárie Dentária , Humanos , Cárie Dentária/diagnóstico por imagem , Suscetibilidade à Cárie Dentária , Imageamento por Ressonância Magnética , Inversão Cromossômica , Nível de Saúde
15.
PLoS One ; 19(1): e0296847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38190402

RESUMO

Molecular breeding methods, such as marker-assisted selection and genomic selection, require high-throughput and cost-effective methods for isolating genomic DNA from plants, specifically from crop tissue or seed with high polysaccharides, lipids, and proteins. A quick and inexpensive high-throughput method for isolating genomic DNA from seed and leaf tissue from multiple crops was tested with a DNA isolation method that combines CTAB extraction buffer and lab-made SA-coated magnetic nanoparticles. This method is capable of isolating quality genomic DNA from leaf tissue and seeds in less than 2 hours with fewer steps than a standard CTAB extraction method. The yield of the genomic DNA was 582-729 ng per 5 leaf discs or 216-1869 ng per seed in soybean, 2.92-62.6 ng per 5 leaf discs or 78.9-219 ng per seed in wheat, and 30.9-35.4 ng per 5 leaf discs in maize. The isolated DNA was tested with multiple molecular breeding methods and was found to be of sufficient quality and quantity for PCR and targeted genotyping by sequencing methods such as molecular inversion probes (MIPs). The combination of SA-coated magnetic nanoparticles and CTAB extraction buffer is a fast, simple, and environmentally friendly, high-throughput method for both leaf tissues and seed(s) DNA preparation at low cost per sample. The DNA obtained from this method can be deployed in applied breeding programs for marker-assisted selection or genomic selection.


Assuntos
Nanopartículas de Magnetita , Cetrimônio , Melhoramento Vegetal , Sementes/genética , Inversão Cromossômica , Sondas Moleculares
16.
Sci Rep ; 14(1): 545, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177653

RESUMO

Rodents of the genus Cerradomys belong to tribe Oryzomyini, one of the most diverse and speciose groups in Sigmodontinae (Rodentia, Cricetidae). The speciation process in Cerradomys is associated with chromosomal rearrangements and biogeographic dynamics in South America during the Pleistocene era. As the morphological, molecular and karyotypic aspects of Myomorpha rodents do not evolve at the same rate, we strategically employed karyotypic characters for the construction of chromosomal phylogeny to investigate whether phylogenetic relationships using chromosomal data corroborate the radiation of Cerradomys taxa recovered by molecular phylogeny. Comparative chromosome painting using Hylaeamys megacephalus (HME) whole chromosome probes in C. langguthi (CLA), Cerradomys scotii (CSC), C. subflavus (CSU) and C. vivoi (CVI) shows that karyotypic variability is due to 16 fusion events, 2 fission events, 10 pericentric inversions and 1 centromeric repositioning, plus amplification of constitutive heterochromatin in the short arms of the X chromosomes of CSC and CLA. The chromosomal phylogeny obtained by Maximum Parsimony analysis retrieved Cerradomys as a monophyletic group with 97% support (bootstrap), with CSC as the sister to the other species, followed by a ramification into two clades (69% of branch support), the first comprising CLA and the other branch including CVI and CSU. We integrated the chromosome painting analysis of Eumuroida rodents investigated by HME and Mus musculus (MMU) probes and identified several syntenic blocks shared among representatives of Cricetidae and Muridae. The Cerradomys genus underwent an extensive karyotypic evolutionary process, with multiple rearrangements that shaped extant karyotypes. The chromosomal phylogeny corroborates the phylogenetic relationships proposed by molecular analysis and indicates that karyotypic diversity is associated with species radiation. Three syntenic blocks were identified as part of the ancestral Eumuroida karyotype (AEK): MMU 7/19 (AEK 1), MMU 14 (AEK 10) and MMU 12 (AEK 11). Besides, MMU 5/10 (HME 18/2/24) and MMU 8/13 (HME 22/5/11) should be considered as signatures for Cricetidae, while MMU 5/9/14, 5/7/19, 5 and 8/17 for Sigmodontinae.


Assuntos
Roedores , Sigmodontinae , Animais , Sigmodontinae/genética , Roedores/genética , Filogenia , Arvicolinae , Muridae , Inversão Cromossômica , Coloração Cromossômica
17.
Braz J Med Biol Res ; 57: e13124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265344

RESUMO

This study investigated the effects of a foot core intervention on the coordination of foot joints in recreational runners. This was a secondary analysis from a randomized controlled trial conducted with 87 recreational runners allocated to the control group (CG), which followed a placebo lower limb stretching protocol, or the intervention group (IG), which underwent an 8-week (3 times/week) foot core training. The participants ran on a force-instrumented treadmill at a self-selected speed (9.5-10.5 km/h) while the foot segment motion was captured. The vector coding technique was used to assess inter-joint coordination for four selected coupled segment and joint angles. The coordination patterns of the calcaneus and midfoot (CalMid) and midfoot and metatarsus (MidMet) joint pairs were affected. In the frontal plane, IG showed an in-phase with proximal dominancy coordination at heel strike, with a decrease in its frequency after the training (P=0.018), suggesting a longer foot supination. Additionally, IG showed an anti-phase with distal dominancy pattern at early stance compared to CG due to a smaller but earlier inversion of the CalMid-MidMet pair (P=0.020). The intervention also had an effect on the transverse plane of the CalMid-MidMet pair, with IG showing a significantly greater frequency of anti-phase coordination with proximal dominancy during propulsion than CG (P=0.013), probably due to a reduction in the CalMid abduction. Overall, the results suggested that the foot core intervention reduces the occurrence of running-related injuries by increasing the resistance to calcaneus pronation and building a more rigid and efficient lever during push-off.


Assuntos
Extremidade Inferior , Corrida , Humanos , Inversão Cromossômica , Terapia por Exercício , Ensaios Clínicos Controlados Aleatórios como Assunto
18.
Mol Ecol ; 33(5): e17275, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38235507

RESUMO

Contact zones between divergent forms within a species provide insight into the role of gene flow in adaptation and speciation. Previous work has focused on contact zones involving only two divergent forms, but in nature, many more than two populations may overlap simultaneously and experience gene flow. Patterns of introgression in wild populations are, therefore, likely much more complicated than is often assumed. We begin to address this gap in current knowledge by investigating patterns of divergence and introgression across a complex natural contact zone. We use phenotypic and genomic data to confirm the existence of a three-way contact zone among divergent freshwater resident, saltwater resident and saltwater migratory three-spined stickleback (Gasterosteus aculeatus) on the island of North Uist, Scottish Western Isles. We find evidence for hybridization, mostly between saltwater resident and saltwater migratory forms. Despite hybridization, genomic analyses reveal pairwise islands of divergence between all forms that are maintained across the contact zone. Genomic cline analyses also provide evidence for selection and/or hybrid incompatibilities in divergent regions. Divergent genomic regions occur across multiple chromosomes and involve many known adaptive loci and several chromosomal inversions. We also identify distinct immune gene expression profiles between forms, but no evidence for transgressive expression in hybrids. Our results suggest that reproductive isolation is maintained in this three-way contact zone, despite some hybridization, and that reduced recombination in chromosomal inversions may play an important role in maintaining this isolation.


Assuntos
Genética Populacional , Isolamento Reprodutivo , Humanos , Inversão Cromossômica , Genoma , Genômica , Hibridização Genética , Especiação Genética
19.
PLoS One ; 19(1): e0297087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38271321

RESUMO

Using spline interpolation to select proportions of similar materials, a comparative analysis of the fracturing behavior of sandstone specimens and similar material specimens was conducted through Brazilian splitting tests under multi-path loading. The study revealed that during stepwise loading, both sandstone and similar materials exhibited memory effects and plastic deformation. However, under constant velocity loading, the relationship between force and displacement in sandstone showed linearity after compaction. Employing MATLAB optimization algorithms for the inversion of acoustic emission event information, the distribution of fracture points, and the evolution of cracks were analyzed. The findings indicated that under stepwise loading, both sandstone and similar materials exhibited banded distribution of peak frequencies, with sandstone concentrated in the mid-low-frequency range and similar materials leaning towards the low-frequency range. The amplitude-frequency characteristics of acoustic emission signals suggested that initially, sandstone produced low-frequency, low-amplitude signals. As cracks developed, these signals gradually transformed into high-frequency, high-amplitude signals, ultimately leading to macroscopic failure. The ringing counts and b-values of sandstone displayed an approximate "W" shape distribution, with a subsequent decrease in b-values during final failure. In contrast, the acoustic emission counts were inversely related to b-values. Similar materials exhibited slightly more acoustic emission counts than sandstone, with relatively lower b-values. The crack development process of both sandstone and similar materials was confirmed through these observations. From the perspective of section initiation and local damage, sandstone and similar materials exhibited similar failure characteristics. The proportions of quartz sand: cement: water = 9:1:0.9 in similar materials demonstrated the most similar characteristics to sandstone in terms of mechanical loading, acoustic emission features, and failure morphology. This suggests that these similar materials can be used as substitutes for sandstone in analogous simulation experiments. The study provides theoretical support for understanding rock fracture mechanisms, offers guidance for the selection and proportioning of similar materials, and holds significance for predicting and controlling rock fracture behavior in engineering applications.


Assuntos
Acústica , Fraturas Ósseas , Humanos , Algoritmos , Cimentos Ósseos , Brasil , Inversão Cromossômica
20.
Plant Biotechnol J ; 22(1): 19-36, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37794706

RESUMO

Prime editing (PE) technology utilizes an extended prime editing guide RNA (pegRNA) to direct a fusion peptide consisting of nCas9 (H840) and reverse transcriptase (RT) to a specific location in the genome. This enables the installation of base changes at the targeted site using the extended portion of the pegRNA through RT activity. The resulting product of the RT reaction forms a 3' flap, which can be incorporated into the genomic site through a series of biochemical steps involving DNA repair and synthesis pathways. PE has demonstrated its effectiveness in achieving almost all forms of precise gene editing, such as base conversions (all types), DNA sequence insertions and deletions, chromosomal translocation and inversion and long DNA sequence insertion at safe harbour sites within the genome. In plant science, PE could serve as a groundbreaking tool for precise gene editing, allowing the creation of desired alleles to improve crop varieties. Nevertheless, its application has encountered limitations due to efficiency constraints, particularly in dicotyledonous plants. In this review, we discuss the step-by-step mechanism of PE, shedding light on the critical aspects of each step while suggesting possible solutions to enhance its efficiency. Additionally, we present an overview of recent advancements and future perspectives in PE research specifically focused on plants, examining the key technical considerations of its applications.


Assuntos
Inversão Cromossômica , RNA Guia de Sistemas CRISPR-Cas , Alelos , Reparo do DNA , Edição de Genes , DNA , Sistemas CRISPR-Cas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...